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ABSTRACT

Finite Element Analysis (FEA) is a powerful tool for
functional morphology purposes. The accuracy of the final
results depends on the mesh generation and the quality of
the mesh. This is especially important in vertebrates as they
present a complex biological structure, implying a complex
geometry and, consequently, mesh generation should be
performed with a consistent criterion. The aim of this paper
is to discuss different ways to create a mesh of a vertebrate
structure with different mesh generation methods and give
recommendations on how to generate an efficient mesh
without exceeding computational limits. Topics such as
quality of the mesh, suitability of the mesh and reliability of
the mesh are introduced to help the generation of the mesh.
In this case, the use of convergence procedures assures the
results of the computational solution and can be a good
solution for the vertebrate models. The skull of a Chinese
giant salamander (Andrias davidianus) is used as a case study.

https://doi.org/10.7203/sjp.30.1.17227

RESUMEN

El Analisis de Elementos Finitos (FEA) es una poderosa
herramienta para los estudios en morfologia funcional. La
exactitud de los resultados finales depende de la generacion de
la malla y la calidad de ésta. Esto es especialmente importante
en los vertebrados, ya que presentan una estructura bioldgica
compleja, lo que implica una geometria compleja y, en
consecuencia, la generacion de la malla debe realizarse con
un criterio coherente. El objetivo de este trabajo es discutir
diferentes formas de crear una malla de una estructura de
vertebrado con diferentes métodos de generacion de malla y
dar recomendaciones sobre como generar una malla eficiente
sin sobrepasar los limites computacionales. Temas tales como
la calidad de la malla, la adecuacion de la malla y la fiabilidad
de la malla se introducen para ayudar a la generacion de ésta.
El uso de procedimientos de convergencia en la generacion
de la malla puede asegurar los resultados obtenidos en la
solucidon computacional y puede ser una buena solucién
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a adoptar en los modelos de vertebrados. Cémo ejemplo
se estudia un craneo de una salamandra gigante de China
(Andrias davidianus).

Palabras clave: Método de los Elementos Finitos, Analisis
computacional, generaciéon de malla, paleontologia de
vertebrados, morfologia funcional.

1. INTRODUCTION

Finite Element Analysis (FEA) (Bathe, 1996) is a
powerful tool in vertebrate palacontology. Its use has
been conducted particularly in mammals and reptiles in
the last ten years and provides new insights to explore the
function, morphological evolution, particular adaptation
and constraints of biological structures (Rayfield et al.,
2001; Strait et al., 2005; McHenry et al., 2007; Jasinoski
et al., 2009; Moazen et al., 2009, Dumont et al., 2011;
Bright & Rayfield, 2011a; Fortuny et al., 2011, 2012
amongst others). The aim of these studies is to test how
well-adapted an organism is for a particular function.
Nevertheless, these predictions are not always plausible
as demonstrated by neontological work (Lauder, 1995).

The application of FEA in the study of the
vertebrates remained unexplored until the late 90°s due
to the complexity of biological geometry and its high
computational cost. Fortunately, the rapidly falling prices
of computers and the rapid increase in computational
capacity over the years facilitated the use of FEA in
estimating the performance of vertebrate skeletal and soft
tissues. Vertebrate palacontologists also found non-invasive
techniques, such as computed tomography (CT), a useful
tool to generate accurate three-dimensional images of
living structures; CT scanning enables the possibility of
performing these kinds of studies at present (see Rayfield,
2007 for a review).

It is widely known that several inputs affect the creation
of a suitable biological FEA model to be solved in a FEA
software Package or a FEA code (Rayfield, 2007). The
accuracy of the results obtained depends on the assumptions
implicit in the model: geometrical simplifications of the
bone and sutures, elastic assumptions in material properties,
appropriate constraints and applied loads as well as the
procedures and methods to generate the mesh.

Due to the complexity of the biological structure’s
geometry, it should be remarked that the generation of the
Finite Element mesh and the techniques to generate it is
a key topic for the accuracy of the final results obtained
with FE methodologies. Nevertheless, this question has
not been widely discussed in the paleontological literature.

In this paper we focus on mesh generation using
FEM in vertebrate palacontology to solve biomechanical

problems using only the elasticity equations. Heat transfer,
fluid dynamics, etc. are not considered.

The aim of this paper is to discuss different ways to create
and optimize a mesh with a consistent criterion for vertebrate
structures and to recommend how to generate a good-quality
mesh without exceeding the capabilities of the computer as
well as other suggestions to improve the mesh generation. We
have analysed the mesh obtained from the skull of a Chinese
giant salamander (Andrias davidianus), as an example to
illustrate the different procedures and recommendations that
can be used to generate an optimal mesh.

2. CONSIDERATIONS USING FINITE
ELEMENT MESHES

2.1. Considerations about mesh generation

As shown in Table 1 with the number of elements of
several models listed, the mesh of three-dimensional
vertebrate structures implies fine meshes and the possibility
to generate a mesh with more than one million of elements.

The size of the mathematical system of equations solved
by the computer is directly related to the total number of
nodes of the domain. It should be noted that the number
of elements is not the best indicator of the mathematical
equation system size (as well as to use as indicator of the
size of the mesh). The number of nodes differs depending
on the type of element used (see Supplementary Information
for further details in type elements). Consequently, the time
required for the computer to generate the mesh and obtain
a solution differs significantly.

As suggested by previous works (Richmond et al.,
2005; Rayfield, 2007; Wroe et al., 2007a) the first
recommended step is to make a previous analysis with
a coarse mesh with few elements to solve, as a first
approximation, to explore the physical problem of the
case study. In this work, coarse meshes and fine meshes
were generated (see below) from the whole skull and both
results were compared. The meshes were generated using
two different methods.
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Table 1. Examples of number of elements in a 3D FEA of some
palaeontological studies.

Year Reference Skull Model Elements
2001 Rayfield ez al., 2001 Allosaurus fragilis 146,398
2005 Richmond et al., 2005 Macaca fascicularis 290,639
2005 Strait et al., 2005 Macaca fascicularis 311,057
2007 Wroe ef al., 2007a Canis lupus dingo 887,281

2007 Wroe et al., 2007a Thylacinus cynocephalus 138,2216

2007 Grosse et al., 2007 Artibeus jamaicensis 113,3096
2007 McHenry et al., 2007 Smilodon fatalis =1,800,000
2007 Wroe et al., 2007b Pan troglodites 3,023,365
2008 Moazen et al., 2009 Uromastyx hardwickii =215,000
2009 Jasinoski et al., 2009 Oudenodon bainii 462,447
2010 Jasinoski et al., 2010 Lystrosaurus declivis 1,087,376
2011 Dumont et al., 2011 Callithrix jacchus 1,136,737
2011 Dumont ef al., 2011 Saguinus fuscicollis 1,248,605
2011 Bright & Rayfield, 2011a  Sus scrofa 1,749,149

The first method is called here uniform mesh and
implies the use of Delaunay method (Peraire et al., 1987)
or Advancing front method (Lohner & Parickh, 1988) to
generate an uniform tetrahedral mesh. A surface mesh
of tetrahedrons on the external surface of the domain is
generated using one of these methods which respect all
faces and edges in the geometry creating a uniform size
of the elements in the whole mesh. The volume mesh is
then created from the surface mesh via an algorithm that
generates prism inflation layers into the tetra volume mesh
created (see Supplementary Information for further details).

In the second method (called here adaptive mesh)
a tetrahedral volume mesh is generated using a spatial
subdivision algorithm as, for example, quadtree method
(see supplementary information for further details). This
algorithm creates an adaptive mesh which ensures refinement
of the mesh where necessary, but maintains larger elements
where possible. This method does not respect the faces and
edges in the geometry unless a boundary condition is applied.
Although for biological or palacobiological models it is often
not the goal of the analysis, when the interest is to find the
exact values of stress or strain is highly recommended to
use a local adaptive mesh instead of generating an adaptive
mesh for the entire domain because the accuracy of these
results will be better.

This can be done by starting with a very coarse mesh
(for the whole domain) and later generating a convergence
test to only refine the areas of interest in order to generate
an adaptive fine mesh in these areas. Convergence test
records a result within a specific location against some
measure of mesh density as the refinement iteration. The
convergence is achieved when the difference between the
two last iterations is less than a certain error threshold (see
below and Supplementary Information for further details
about convergence tests).

Although the influence of element size in the recorded
values of strain, stress and deformation has been studied
successfully in regular meshes (Bright & Rayfield,

2011Db), herein a step-beyond procedure, such as the local
converged adaptive mesh, will be tested and discussed.

2.2. Considerations of the results

In FE Analysis of vertebrate structures, distribution and
maximum values of equivalent von Misses stresses,
principal stresses, strains and total deformations are usually
recorded to compare or study their behaviour under the
effect of the loads and constraints defined for each problem
(Kupcezik, 2008).

Furthermore, mesh convergence tests are a useful tool
to look for the optimal solution to ensure the best result
with the coarsest possible mesh. But convergence tests can
generate artificial noise with divergence stresses in some
points where the record value follows a vertical asymptotic
with tendency to increase the value towards infinity when
the mesh is refined (see Supplementary Information for
convergence/divergence mathematical concepts). This
artificial noise is a numerical singularity and is well-known
in the field of the FEA (Morris, 2008).

This singularity could be a consequence of simply
supported boundary conditions or a perfect square within
the geometry. A simply supported condition is an idealistic
assumption. This condition creates a numerical effect
that leads to the stress increasing without limit when the
mesh is refined for both 2D and 3D elements. In similar
way, the perfect square condition is also an idealistic
assumption where a corner with zero radius creates a stress
concentration that also leads the value to increase without
limit when the mesh is refined. To avoid this artificial
noise, it is not recommended to record the maximum
stresses or strains values in the whole domain because
maximum values could coincide with artificial noise. As
some other authors warned about these considerations
(Rayfield, 2007), it may be difficult to assess the peak
stresses of the model in the whole domain. However,
analysis in a particular area of interest can avoid this
problem. Following this procedure, the areas of interest
are suitable for convergence, and omit the singularity
provided by the maximum peak stresses or strains values
where artificial noise could appear.

Another option to avoid artificial noise produced by the
singularity in the simply supported boundary condition is
to use a very coarse mesh in this area. The low accuracy
of the coarse mesh prevents the artificial noise being
recorded and moreover, in spite of the mesh, the stiffness
of the model is not modified and the deformation values
can still be recorded.

On the other hand, using FE methodologies is usually
necessary to compare the results obtained from different
taxa analysed. Some authors (Strait et al., 2005; Grosse
et al., 2007; Pierce et al., 2009; Fletcher et al., 2010;
Jasinoski et al., 2010) recorded the maximum stress and
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strain values at the same selected points for each model
they wanted to compare. This procedure could be very
useful especially when the aim is a validation study in
which in vivo experimental bone strain data are collected in
the same locations (Strait ef al., 2005; Bright & Rayfield,
2011a). In this case, the values obtained with FEA can be
compared with the values of the experimental test.

Nevertheless, if the aim of study is not intended to
visualize absolute stress and strain of the vertebrate
structure, but instead is an attempt to generate useful
comparative models, a general stress pattern may be
accepted. Thus, a qualitative analysis of the general stress
patterns could be made when the aim is to observe the
relative similarities and differences in the mechanical
behaviour instead of recording the exact values of stress.

The only analysis that can avoid all these suggestions
and recommendations about the mesh and how to avoid
artificial noise is when the case study is to obtain the
reaction values or deformation fields (Clausen et al., 2008).
This type of analysis does not generate artificial noise and
any mesh can be used to solve these models (an efficient
mesh could be a very coarse one).

3. CASE STUDY

3.1. Analysed specimen

The specimen used is the skull of the Chinese giant
salamander (Andrias davidianus). This cranial material
(MZB — 2001-0961-B) housed in the Museu de Ciencies
Naturals de Barcelona corresponds to an adult specimen.
The Andrias genus is represented by two living species
of giant salamanders and includes the largest extant
amphibians.

3.2. Computed tomography

The skull of Andrias davidianus was scanned with a
medical CT Siemens® Sensations-16, at 140 kV and 150
mAs giving an output of 512 x 512 pixels per slice. The
pixel size and the inter-slice space were 0.586 mm and
0.1 mm, respectively. CT data were imported to Mimics®
software to obtain a 3-D model of the skull.

3.3. Finite Element Analysis procedures

The solving procedure and the mesh generation were
performed using the automatic algorithms available in
the FEA package ANSYS 12.1 operating under Windows
XP (32-bit system) on a Intel® Core™2 Quad, 800 MHz

with 4 GB of RAM. Elastic properties were assumed for
the cortical bone, using the following values: E (Young’s
modulus of Elasticity): 6.65 GPa and v (Poisson’s ratio)
0.35. These values are hypothetical and were only used
to test the generated mesh. In any case, our purpose is to
present procedures and methods to obtain an optimal mesh
for the Chinese giant salamander (Andrias davidianus) and
no biological implications could be inferred. Other research
cover this issue, discussing the functional morphology of
this giant amphibian (Fortuny ez al., 2015).

In this case study, the quality of the mesh, the elapsed
time and the reliability of the results obtained were studied
in 5 different meshes: a coarse mesh and a fine mesh
created with the two methods described above, and a local
converged mesh. The local convergence mesh has been
generated starting from a very coarse Uniform mesh. It is
done in this way because a convergence procedure is not
allowed in the Adaptive mesh. To compare the values of
stress at different points on the skull, three middle lines
are marked in the model: the first in the upper part of the
skull, the second in the lower part of the skull and the
third in the inner part of the skull (Fig. 1). The values of
the stress results were recorded in these lines. Far from
the singularities in the fixed points, these lines are located
in a good place to test the values of stress in the different
meshes and in the convergence procedure.

= \/on Mises stress 1
mm \on Mises stress 2
== \/on Mises stress 3

Figure 1. First line in the upper part, second in the lower part
and third line in the inner part of the skull where the
Maximum Von Mises stress are captured in the four
meshes.

3.4. Loading conditions of the model

The biomechanics of 4. davidianus can be modelled as
a system of levers, as the skull and jaws form a single
lever system. In this simplified attempt, the model was
fixed by the occipital condyles and was loaded from the
pterygoid and the articular-coronoid (Meckel cartilage
area) to simulate the skull-lower jaw movement during
open-close of the mouth, as the movement of the skeletal
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levers is accomplished by the contraction of the associated
musculature. Herein, the hyobranchial skeleton was
omitted as it is out of the scope of the present article. In
the case of the lower jaws, the depressor mandibulae and
the levator mandibulae act both as antagonists when they
open or close the mouth. (Deban & Wake, 2000) (Fig. 2).

S

Figure 2. The model of the Chinese giant salamander (Andrias
davidianus) simply loaded by the pterygoid (skull) and
the articular-coronoid (Meckel’s cartilage area) (jaw).

4. RESULTS

Firstly, we generated 4 different meshes; using the two
methods described above, we created a coarse tetrahedral
mesh and a fine tetrahedral mesh for each method of
generation (uniform and adaptive meshes).

Table 2 shows the different meshes considered in this
work. By changing an element size indication for the whole
mesh, the FEA package generates a fine mesh with a high
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number of nodes and elements instead of a coarse mesh.
Table 2 also indicates in seconds the elapsed time spent to
create the mesh and the quality indicators corresponding
to the aspect ratio and the skewness of the mesh obtained
by each different mesh. Quality Indicators inform on the
quality of the mesh, such as indicators for measuring a specific
item or the whole shape of the mesh (see Supplementary
Information for further details about quality indicators).

Secondly, a local convergence procedure was performed
in the Chinese giant salamander model to record the stress
maximum values of von Mises in the three middle lines
previously mentioned (Fig. 1). An initial coarse mesh is
needed to start the procedure before obtaining the final
converged mesh (mesh 5, Table 2). The elapsed time used
to generate the mesh in the local convergence procedure
includes the elapsed time spent in solving the equations and
obtaining the results. Herein, an automatic convergence
procedure is used (see Supplementary Information for
further details about automatic convergence).

The results obtained for the 5 different meshes
can be observed in Figure 3, where each one shows
the deformation distribution and the von Mises stress
distribution. The higher values obtained in the three middle
lines of Figure 1 are captured for the five different meshes
in Table 3. This table also shows the elapsed time spent
to solve the mesh in seconds.

S. DISCUSSION

As previously mentioned, when the size of the mesh is
smaller, the result will be more accurate. Consequently,
reducing the size of the elements of the mesh could be a
good option to improve the results, even though it increases
the computational cost of the problem. Subsequently, using
tools as a convergence test are a good option to find the
optimal mesh size. If the size of the elements is reduced,
then the quality of the mesh will also improve.

Table 2. Different meshes considering the method in the mesh generation with nodes and elements of the model, elapsed time and
quality indicators. *Mesh 5 includes the mesh generation and the solve Elapsed Time.

Mesh Aspect ratio Skewness
. El Elapsed
Case Generation Nodes ements Time [s] Averase Standard Averase Standard
Method 8¢ deviation 8¢ deviation
Mesh 1 Coarse 31,209 16,527 40 4.2585 16.4060 0.5880 0.2477
Uniform
Mesh 2 Fine Uniform 426,165 248,183 170 2.3105 0.8369 0.4190 0.1974
Mesh 3 Coarse Adaptive 31,727 17,743 210 2.1803 0.7669 0.3473 0.1616
Mesh 4  Fine Adaptive 531,677 359,631 380 1.8581 0.4366 0.2213 0.1541
Mesh 5 Final converged 94,464 59,676 265* 2.1732 0.8765 0.3137 0.1243

mesh
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Figure 3. The 5 different meshes with the deformation distribution and the Von Mises stress distribution obtained.
Mesh 1: Coarse Uniform; mesh 2: Fine Uniform; mesh 3: Coarse Adaptive Mesh; mesh 4: Fine Adaptive;

mesh 5: final Converged Mesh.

5.1. Quality of the mesh

The quality of the mesh evaluates the precision when
the element integrates the equations in the domain of the
element to obtain the results of the mathematical problem
by the Finite Element Method.

The natural tendency observed in all the meshes
generated is to increase the quality when the overall
element size of the mesh is small (ideally, the mesh aspect
ratio must be 1 and the mesh skewness must be 0). This
means that the quality indicators tend to reach the most

optimum mesh. Otherwise, the Adaptive method generates
meshes with better quality indicators because the mesh is
better suited to the irregular geometry of the skull.

In our case, the quality indicators demonstrate that
Fine Adaptive mesh (mesh 4) (see Table 2) improves
the quality indicators more than 50 % comparing to the
uniform mesh with a coarse mesh. In other words, it is
not a recommended procedure to create a mesh in which
all the elements have the same size. Even if the size of
the elements is small, the mesh efficiency (elapsed time
vs. quality) is not good. Table 2 also shows that, when
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a convergence procedure is applied in a domain or in a
partial domain (mesh 5), the quality of the mesh will be
automatically improved in the same way as the elements
of the mesh reduce its size.

5.2. Suitability of the mesh

The suitability of the mesh evaluates how the distribution
of the different sizes in the mesh is well adapted to the
changes in the stress gradients. For example, an important
point to take into account is that in the regions of the
domain with constant stress pattern (without large stress
gradients), a coarse mesh could be used while, in the areas
with large stress gradient, a fine mesh is required.

This characteristic mesh can be obtained easily by
generating a fine mesh in the areas with sharp changes in
the geometry and generating a coarse mesh in the areas
where the geometry is constant. The meshes obtained
using the Adaptive Method assure this characteristic
mesh automatically comparing with methods such as the
Delaunay-Advancing front, which cannot obtain them
automatically. In the case of the uniform meshes, another
mesh generation procedure would be needed (remeshing)
including a manual refinement in the areas of interest to
obtain a mesh that would accomplish these characteristics.
It would substantially increase the elapsed time spent to
create the mesh. In the Figure 5 is observed how the low
stresses in the dorsal endocranial area of the skull have
practically the same distribution for a coarse mesh (meshes 1
and 5) than for a fine mesh (meshes 2, 3 and 4).

The Adaptive mesh better suits irregular geometries. But
although the elapsed time spent in the mesh generation is
higher, comparing with uniform meshes, it will be reduced
in the solving procedure of the mesh (as Table 3 shows).

5.3. Reliability of the results

The reliability of the mesh evaluates how the result
mathematically obtained by the Finite Element Method is
close to the theoretical value.

Bearing in mind that the different meshes obtained from
the different methodologies as well as the convergence
procedure, it could be observed how these results are quite
similar in most parts of the mesh. This is especially true
for the lower values of von Mises stress distributed in
practically the same areas have similar values. In contrast,
when the values are higher the changes in the pattern are
more pronounced (Fig. 3).

There are different reasons to explain this trend.
Firstly, the stress gradients are better captured when using
a small size element whenever this stress gradient has
fast variations. And secondly, the artificial noise grows
in direct relationship with the decrease of the size of the

elements. The changes in the higher values can be observed
in more detail in Table 3, where the higher values in the
three middle lines of the Figure 1 are captured for the five
different meshes.

During the iterative process of the convergence test the
elapsed time spent in mesh 5 includes the mesh generation
and the solution of the mesh. It is because the algorithm
creates the new mesh and obtains the solution in each step.
Therefore, considering that the convergence procedure is
the one with the most reliable solution, the results obtained
for coarse meshes are far from the converged solution more
than the fine meshes. In Figure 4 it is specially shown
how the distribution of the von Mises stress changes
due to changes in the mesh, especially if it is a coarse
or a fine mesh. Considering both elapsed times spent in
creating the mesh (Table 2) and solving the mesh (Table 3),
convergence procedure is the one with the lower value.

Table 3. Maximum values recorded in the 5 meshes, total
deformation, Von Mises Stress in the line 1, in the line
2 and in the line 3 and Elapsed Time. *Mesh 5 includes
the mesh generation and the solve Elapsed Time.

Maximum values recorded

Von Von Von
Case Def(;l:)r:la; tion Mises Mises Mises Elapsed
(mm) Stress 1 Stress 2 Stress 3 Time [s]
(MPa) (MPa) (MPa)
Mesh 1 2.7336 55.331 101.53  103.58 10
Mesh 2 2.9558 54.713 111.64  114.77 680
Mesh 3 2.6494 53.324 85.02 102.82 18
Mesh 4 3.0112 54718 11145  122.53 495
Mesh 5 2.8374 54.703 112.1 124.62 265%

Furthermore, Figure 3 reveals that the deformation
distribution is practically the same in the different meshes
while Table 3 shows the similar pattern since the maximum
deformation recorded differs little from each mesh. This
robustness of the values of the deformation in front of the
different meshes occurs because deformation is the direct
solution of the equations system and the result obtained for
a coarse mesh will be a very good approximation value.
The only problems possible to appear with the results
are the stresses, because they are not a direct solution of
the equations system. They must be calculated from the
deformation integrating the equations in the domain.

5.4. Efficiency and time reduction in FE
analysis

Another important issue to point out is the design of the
biomechanical study and how to solve it. One possible
solution could be to reduce the mesh of the model by
taking advantage of the bilateral symmetry present in the
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Figure 4. Von Mises Stress distribution in the frontal-parietal bones for the 5 different meshes solved. Mesh 1: Coarse
Uniform; mesh 2: Fine Uniform; mesh 3: Coarse Adaptive; Mesh; mesh 4: Fine Adaptive; mesh 5: final

Converged Mesh.

biological structures (see Supplementary Information for
further details about symmetries). Herein, we used the
bilateral symmetry of the A. davidianus skull to generate
a mesh containing the half of the original domain (Fig. 5).
In similar way, Wroe et al. (2007b) considered the
bilateral symmetry of the skull in some of their computer
simulations of hominid cranial mechanics. The mesh of
their whole hominid model reached more than 3 million
brick elements. However, in the case of the bilateral bite,
Wroe et al. (2007b) considered the bilateral symmetry
and obtained a mesh with less than 2 million elements.
As a consequence of the reduction of the number of the
elements, the computational time spent in performing the
calculations could be reduced by half.

Otherwise, as a consequence of the mesh reduction, the
mesh density may be increased obtaining greater accuracy
with fewer elements than if the whole structure is modelled.
This might be particularly useful if a convergence curve
has to be used in the model.

Considering the above options to reduce the mesh
and to increase the accuracy of the model, the first step
is to check if our domain accomplishes the symmetry
conditions while, the second step is to divide the domain
in two symmetrical parts and finally generate the mesh.
The number of nodes and elements of the new mesh would
be approximately the half of the nodes and elements of
the whole domain.

Finally, the last issue to take into account in order to
generate an efficient mesh as suggested is the generation
of a structured mesh whenever the domain allows it (see
supplementary information about structured meshes). If the
domain is irregular, the generation of a structured mesh
could be difficult. In these cases, it is suggested to create
a hybrid mesh. These types of meshes include unstructured
and structured parts, and the main goal is to generate the
maximum of possible parts with a structured mesh. In
our case, we tested the importance of the hybrid meshes
(Fig. 5): one is a hybrid mesh with a regular hexahedral
mesh while another is a hybrid mesh with hexahedral and
tetrahedral elements.

The best areas to be meshed as a structured mesh are
the parts of the model with regular thickness. In this case

we suggest focusing the efforts on giving the necessary
instructions to the mesh tool of the FEA package to create
a structured mesh. This will improve the quality of the
mesh and the size of the storing file. Table 4 shows how
the number of nodes and elements can be lower than the
whole model and how the hybrid meshes can improve the
quality of the mesh in spite of the high standard deviation
of the second hybrid mesh (as a consequence of being
together in the same mesh tetrahedron and hexahedron
elements).

(A) Regular hexahedrical
hybrid mesh

L

b,

S

g R
Pavatty,

Figure 5. Half domain hybrid-structured meshes, taking
advantage of the symmetric reduction. Left, mesh 6.
Right, mesh 7. Note that due to the irregular geometry,
mesh (a) cannot be structured in the whole domain
and for this reason must be a hybrid regular mesh.
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Table 4. Nodes and elements and quality indicators of the half-domain hybrid models.
Mesh T ¢ Aspect ratio Skewness
Case Generation Nodes elzslil?ts Elements Elapsed Time [s] A Standard A Standard
Method Verage  deviation 'O 8¢ deviation
Mesh 6  Half-domain ~ Only 252,954 121,241 140 1.9743 0.5132 0.2924 0.1021
hybrid mesh 1 Hexahedrical
Mesh 7 Half-domain ~ Hexahedrical 232,976 106,584 130 2.2131 1.2145 0.3641 0.5421

hybrid mesh 2 and Tetrahedical

Table 4 also shows the elapsed time in the case of Mesh
6 and Mesh 7, which is lower than in the other meshes.
The elapsed time is reduced because the model has fewer
nodes and because the structured parts improve the size
of the storing data.

6. CONCLUSIONS

The mesh generation should be done with a consistent
criterion to achieve an accurate final result although the
overall accuracy of the results obtained in FEA will depend
on the assumptions implicit in the model.

A consistent criterion may start with a first approximate
analysis using a coarse mesh to explore the physical
problem of the case study, and later followed by the main
analysis with a suitable mesh. It is observed that the
values obtained for the deformation are robust in front
of the changes in the mesh and, in contrast to that, the
values obtained for the stresses are absolutely dependent
on the mesh. It means that the mesh will be chosen with
a consistent criterion checking the stress results. For a
whole mesh, it is recommended to use an adaptive mesh
rather than a mesh with a uniform element size (such as
those generated using the Delaunay or the Advancing front
method). Firstly because the adaptive mesh has better
quality indicators (skewness and aspect radio), secondly
because it fits better in the irregular geometry and the
stress gradients generated, and finally, because it assures
more realistic results. Otherwise, it is highly recommended
creating a convergence procedure when looking for a
particular stress result in a specific area of the geometry.
This procedure will enable us to create a final converged
mesh displaying the adaptive results required without
wasting computational resources in the areas with no
interest. Moreover, this local analysis helps us to improve
our results avoiding the artificial noise in the points where
singularities appear and minimises solution time (Mesh
generation and Solution of the mesh).

According to the points discussed in this paper, it can
be concluded that a good, efficient mesh should meet
these goals by meeting the following: a) the domain of
our problem has to be represented; b) if the geometry is
simple, a structured mesh is preferred over an unstructured

mesh; c¢) good quality elements are preferred (equilateral
triangles and square quadrilaterals) over lower quality
elements; d) a fine mesh is recommended in the area
of interest and a coarse mesh outside these areas; e) a
convergence test of the mesh should be performed if it is
possible in the case study, and; f) if the domain contains
symmetric or asymmetric sections, consider dividing the
original domain in order to create a mesh with a smaller
number of nodes and elements.
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7. SUPPLEMENTARY INFORMATION

7.1. Definition and characteristics of a mesh

The mesh of a FEM domain is a collection of sub-
domains called elements interconnected between them
with nodes that defines the shape of the domain where the
physical problem will be solved using the finite element
method. The sub-domains usually consist of triangles,
quadrilaterals, tetrahedrals, hexahedrals or other simple
convex polygons which simplify and discretise the
geometry of the original domain.

The underlying premise of the method states that a
complicated domain can be subdivided into a mesh in
which the equations are approximately solved.

A problem can be solved in a two-dimensional domain
or in a three-dimensional domain, however different finite
elements are required as shown in Figure S1. The geometry
of the original domain can be replaced by a linear element
or a quadratic element depending on the decision of the
mesh procedure, but in curved geometries fewer quadratic
elements will be needed to approximate the geometry
comparing with the number of linear elements needed to
obtain the same geometric approximation.

When the domain consists of surfaces or lines, the
mesh created uses shell elements or beam elements
projected in a three-dimensional space, as Figure S2
shows. These elements need a different formulation to
the solid elements explained above but, usually, FEM
packages control its usages.

Today, the main commercial packages of FEA include
several methods to automatically generate the mesh of the
domain without human intervention. This improves the
analysis but the mathematically complexity of the FEM
will not avoid the mesh generation still having to be treated
with care. It is important to find a consensus between the
best mesh to be built and analysed and the limits of our
computational machines.

7.2. Mesh Generation methods

Regardless of whether a manual or automatic mesh
generation method is used, the process consists of different
tasks, initial mesh generation, remeshing and refinement.

7.2.1. Initial mesh generation

Initial mesh (Fig. S3.1) generation requires a description
of the mesh domain geometry. The domain is usually
generated using CAD tools and the mesh generator will
then create a mesh that covers the domain according to
the mesh size requirements specified by certain control
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Figure S1. Type of two-dimensional and three-dimensional
finite elements.

parameters. The initial mesh can be called the coarse mesh,
since it may be improved by remeshing or refinement in
the following tasks.

7.2.2. Remeshing

This is carried out when a given mesh, usually the initial
or coarse mesh, no longer satisfies the established criteria
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Figure S2. Type of shell and beam finite elements.

for the mesh size or element quality. Then, a new mesh
is created using the initial mesh as a starting domain for
the new (Fig. S3.2).

7.2.3. Refinement

This occurs when additional elements are formed in one
or more areas of an initial mesh (Fig. S3.3).

7.3. Types of mesh

7.3.1. Uniform and non-uniform mesh

A uniform mesh consists of a mesh in which the element
size is the same for all elements. A non-uniform mesh is a
mesh in which the element size is different (see Fig. S4).

7.3.2. Structured and unstructured mesh

A structured mesh (Figs S4.1-2) consists of two sets of
lines forming a regular grid. The lines in the same set do
not intersect each other. These lines only intersect with
other lines from other sets once generating the regular
grid since the connectivity of the elements is regular.
The basic methods used to generate structured meshes
classified by Frey & George (2000) are, Algebraic
interpolation methods, solving partial differential equations
and multiblock.

An unstructured mesh (Figs S4.3-4) occurs when it is
not the result of the intersection of sets of parallel lines.
There are a lot of unstructured mesh generators and the
three most importants are, the advancing front method
(Lohner & Parickh, 1988), the Paving method (Blacker &

(1)

(2)

""”.'iifl;i'-w»--_ll -

Figure S3. 1) Initial, 2) remeshed and 3) refined mesh.

Stephenson, 1991) and the Delaunay triangulation (Peraire
et al., 1987).

A hybrid mesh (Fig. S4.5) consists of one part of
structured mesh and another part of unstructured mesh.

7.3.3. Advantages and disadvantages

The automatic mesh generation method applied depends
on the type of mesh. Depending on its type, one
generation method will be more optimal than another.
Structured meshes are generally created for quadrilateral-
shaped elements (quadrilaterals, hexahedrals, etc.) while
unstructured meshes are generally used for triangular-
shaped elements (triangles, tetrahedrals, etc.).

A triangular-shaped mesh can be generated quickly,
automatically, and for complicated geometries it is a shape
perfectly suitable for covering the entire domain. However,
for an isotropic refinement (in order to capture gradients
in one direction, mesh is automatically refined in all three
directions) cell counts rise rapidly and the number of
elements and nodes are higher than those in a hexahedral
mesh with a similar mesh density.

A quadrilateral-shaped mesh usually has fewer than
half of the nodes of a tetrahedral mesh. By contrast, for
arbitrary geometries, hexahedral meshing is not always
suitable or may require a multi-step process (wasting a lot
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Figure S4. 1) Structured uniform, 2) structured non-
uniform, 3) unstructured uniform, 4)
unstructured non-uniform and 5) hybrid mesh.

of time in obtaining a good mesh), although the final mesh
can yield high quality/high efficiency. In any case, the
structured meshes require less memory to store information
and it will be recommended to use this type of meshes at
any time domain allows it. If the domain is irregular we
suggest creating a hybrid mesh to take the advantage of
a structured mesh in the parts which is possible and an

unstructured mesh in the parts in which the complexity of
the geometry cannot allow a structured mesh.

7.4. Error analysis

The objective of the error indicators is to evaluate how
close the finite element solution is to the exact solution
of the mathematical model and, therefore, whether the
generated mesh is good enough to give us the right solution
to the problem. The errors in a finite element analysis come
from mathematical modelling, finite element formulation
and model mesh. The errors from the mathematical model
and the finite element formulation arise in mathematical
theory and do not affect the mesh generation. The mesh
error is generally caused during the transformation of the
original domain (which consists of a continuum media)
into a number of finite elements. These error estimates may
be used as useful information in adaptively refining the
mesh. In most FEA packages this process is now performed
automatically by relating the error estimate to mesh size
parameter, which implies that with higher error estimates,
the size of the generated mesh is smaller.

7.5. Mesh quality

In the areas where the original domain has a high geometric
complexity, the mesh elements created in the mesh
generation process can become distorted and, consequently,
these elements will produce poor quality indicators. Poor
quality elements can lead to poor quality results or, in
some cases, no results at all. In the literature, there are
several parameters to assess the quality of the mesh, such
as indicators for measuring an specific item or the whole
shape of the mesh, Aspect Ratio, Jacobian Ratio, Warping
Factor, Parallel Deviation, Maximum Angle, Skewness or
Taper (see Topping et al., 2004 for more details).

These parameters can be used to construct an overall
indicator of the quality of the mesh, thus obtaining the
different quality indicators and limiting this value to a
minimum threshold or to obtain the average rate of various
quality indicators. There are indicators for all type of
elements (triangular, quadrilaterals, two-dimensional and
three-dimensional) and they are listed in the literature (see
Topping et al., 2004 for more details).

Generally, these quality indicators are higher when the
triangular elements are equilateral and the quadrilateral
elements are perfectly squared. Therefore, the quality of
the mesh will be better when the elements are closer related
to regular shapes. When the mesh has a good quality, the
error is smaller than in meshes with a poor quality due to
the finite element formulation (Fig. S5).

The three most important factors affecting mesh
quality are, 1) the CAD issues; 2) the mesh resolution and
distribution, and; 3) the meshing method used to generate it.
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Figure S5. Aspect ratio of triangular and quadrilateral
elements.

CAD issues need to be previously fixed to avoid small
edges, sharp edges and faces, small gaps/passages between
edges and faces and unconnected geometry entities.
This can be done by simplifying the geometry, merging
faces or edges, avoiding narrow faces, keeping volume
gaps only where they are important, decomposing the
geometry, removing unnecessary geometries or repairing
the geometry. These tasks should be done before the mesh
is generated.

Inappropriate mesh resolution and distribution may
lead to large cell quality mesh indicators. Geometry with
abrupt changes, discontinuities and/or small gaps may
require higher mesh resolution and must take into account
the most appropriate distribution in every case.

To sum up, inappropriate usage of Meshing Method
may lead to poorer quality mesh indicators because the
selection of the Meshing Method depends on the geometry
and application.

7.6. Convergence of the mesh

The convergence of the mesh refers to the procedure to
obtain sufficient smallness of the elements required in
a model to ensure that the results of an analysis are not
affected by changing the size of the mesh. The optimal
solution would be the finest possible mesh because a finer
mesh typically results in a more accurate solution. But,
as a mesh is made finer, the computation time increases.
The goal of a convergence study is to look for the most
optimal solution which ensures the best result with the
coarsest mesh possible.

7.6.1. Convergence curve

The convergence curve plots a critical result parameter
within a specific location against some measure of mesh

density or refinement iteration. At least two iterations of
the solution procedure will be required to plot the curve.
The convergence is achieved when the difference between
the two last iterations is less than a certain error threshold
(Fig. S6). The size of the mesh (of this refinement iteration)
is smaller than the initial size and can be considered good
enough to capture the results in the domain without the
necessity of refining the mesh again.

When the refinement is applied in the convergence
study, all the elements of the model should be split in all
directions. However, it is not necessary to perform this
refinement in the whole model because of the Saint Venant
Principle. This principle states that local stresses in one
specific region of a structure do not affect the stresses in
the other.

This statement allows an adaptive mesh of the domain
to be generated by converging the model by refining
the mesh only in the regions where the convergence is
applied, to retain the unrefined mesh elsewhere and to have
transition regions, from coarse to fine meshes (Fig. S6).

Reference Value

Local Convergence applied |

Initial coarse mesh

na L L s 1
1 2 3 4 5 [

MNumber of iteration

Figure S6. Convergence mesh diagram with the initial
coarse mesh and the final adaptive mesh using a
Convergence criterion in a specific point of the
domain.

7.6.2. Meshing strategy

The use of local mesh refinement for a convergence study
can be extended to produce accurate results in specific
regions of the domain with significant implications for our
purposes. Thus, an adaptive mesh could be considered,
using a very fine mesh in the regions of interest, and a
coarse mesh in the others regions.

The role of all elements away from the regions of
interest only represents geometry and transmitting load,
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without affecting the results. In the regions of no interest,
the level of the mesh is lower than for accurate result
predictions and these elements can be larger and create
a coarse mesh. Nevertheless, this coarse mesh should be
subject to the constraints to allow both reasonable quality
transitions and geometry representation and must not
misrepresent the geometry.

This strategy will enable our model to find the required
balance between a fine mesh in the points of interest and a
coarse mesh outside, which drastically reduces the overall
number of elements of the domain mesh and, consequently,
the computational time.

In Figure S6, the convergence criterion is only applied
in the central hole of the rectangle. We are not interested
in the results of the distant regions and the mesh is only
refined near the hole. This strategy is called efficiency;
greater numbers of elements require more computing
resource (memory /processing time). It is important to
balance the faithfulness of the simulation with available
resources. This strategy is better than to entire the mesh
of the model with small, high quality elements in order
to improve the overall accuracy in the whole domain and
resulting in an inefficient strategy.

7.6.3. Automatic convergence

Initial refined mesh is automatically generated by most
FEA packages and convergence tools are used as part of
the solution process (h-adaptive method). This is done by
some FEA packages to control the accuracy for selected
stress results and employing an adaptive solver engine to
identify and refine the model in areas that benefit from
adaptive refinement The Zienkiewicz-Zhu norm (1992a, b)
for stress in structural analysis is used to control the
element’s results and convergence whenever possible.

7.7. Symmetric areas

A domain is symmetrical when it is identical on either
side of a dividing line or plane (Fig. S7). Along the
line or plane of symmetry, boundary conditions must be
applied to represent the symmetrical part. A domain is anti-
symmetrical when the loading of a model is oppositely
balanced on either side of a dividing line or plane (Fig. S7).
Boundary conditions must be applied along the line of
symmetry representing the anti-symmetric part.

In this case “identical” means that four conditions
are achieved, 1) the domain; 2) the boundary conditions;
3) the material properties, and; 4) the loads are symmetrically
the same in each part of the domain.

If the domain of a model can be divided with natural
lines of symmetry and anti-symmetry, it could be
interesting to analyse only a portion of the model. This
technique reduces the total number of nodes and elements

of the model, reduces the time needed for computational
analysis, and also the demands of the computer resources.

In this case, the construction of the model can include
a symmetrical portion (half, quarter, eighth, etc.), by
applying the appropriate boundary conditions. The
advantages of a symmetrical and an anti-symmetrical
model include the following; the processing analysis of
a symmetrical portion (of a structure) is faster than if the
whole structure is modelled. Furthermore, it is possible to
increase the density of the symmetrical model obtaining
greater accuracy and still keep a few elements, rather than
if the whole structure is modelled. Therefore, symmetry
and anti-symmetry approaches are good strategies to
improve the efficiency of the model.

v

Symmetric domain

v #

Antisymmetric domain

Figure S7. Symmetric and Antisymmetric domain.
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